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Section 1. Flat Beam Producing Condition 
 
 Our goal is to use a so-called adaptor, a set of consecutive skew quadrupoles, to 
manipulate a bunch of particles to get a flat beam, which has a very small emittance in 
one plane compared to that in the other plane. Using skew quadrupoles in stead of normal 
quadrupoles is in order to get a flat beam standing in horizontal or vertical plane instead 
of 45 degree or 135 degree inclined plane. The bunch of particles is born in a finite 
uniform magnetic field produced by one or several solenoids. Ideally, for a cold bunch 
( by “cold” I mean zero initial transverse momentum ), and space charge effect ignored, 
the bunch will just drift with initial energy in the magnetic field until it meets the end of 
the solenoid field. We will stick with this ideal cold bunch until we get some basic idea of 
the transformation. Actually, If we noticed the form of the matrices of solenoid exit and 
skew quadrupoles,  
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the matrix of the skew quadrupole is:
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we would understand why we choose these components to achieve the task, the point is 
that all these matrices are X-Y plane coupled and our task is to transfer emittance from 
one phase space to the other. 
 In  figure 1, it is a illustration of the solenoid and an adaptor, in reality, the 
position of each component is fixed, the solenoid field is relatively fixed(the selection of 
value of the field usually includes some factors other than pursuing flattest bunch), the 
gradients of the quadrupoles are usually adjustable. 
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Figure 1. Flat beam producing adaptor setup 

 
 Now let’s consider how to get flat beam with this setup by matrix approach. At 
first, we have a cold bunch, the status of any one particles of the bunch can presented as: 
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For simplicity, I am going to use normal quadrupoles in stead of skew quadruples 

in following analysis, and which will result in a flat beam inclined in a 45 degree plane or 
135 degree plane. So, we can express the transfer matrix for the whole adaptor as: 
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Then, when the bunch arrives the exit of this adaptor, it will be with status: 
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To get the flat beam inclined at 45 degree we are pursuing, we need 
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transformation is valid for particle with any position within the bunch, from (1), we know 
that means:  
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Only three equations in (2) are independent, since the determinant of the transfer matrix 
is 1. And we will use the first three in following section’s calculations. Now Let’s 
express (2) in matrix way, we can find a simple form for this plat beam producing 
condition,  
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where N and M are transfer matrixes for each plane of the adaptor and  
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For a flat beam inclined at 135 degree, by similar procedures, we can get 
 
                                                NFMMFN =⇔−=  
 
which is exactly same as that in FERMILAB-TM-2114.  
 

In this paper, an equivalent condition is also given in the form of Courant-Snyder 
parameters. For a transfer line, the matrix can be represented as; 
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the subscript 1 and 2 indicate the starting point and ending point of the transfer line. µ is 
the phase advance. At the starting point of the adaptor, for the cold bunch getting out of 
the solenoid:  
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We can consider that, at initial status, all particles within the bunch are located on circles 
with different radius, or, 
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 from (4), we can derive easily the status of the bunch at the entrance of the adaptor: 
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Compare to the beam ellipse equation in trace space: 
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It is easily to find that: 









=

=

=

2
0

1

1
1
0

KR
K

ε

β

α

                                           (5) 

 
Then the matrix of the adaptor in Courant-Snyder form is: 
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Substitute (6), (7) into (3), we can derive another form of the flat beam producing 
condition: 
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Section 2. Examples of Flat Beam Producing adaptor 
 
 For an ideal cold bunch, once we know the energy of the bunch and the solenoid 
field, in principle, we can derive the gradient for each quadrupole from the first 3 
equations of condition (3). While, since the quadrupole matrix consist of sin, cos, and 
sinh, cosh terms, these equations are transcendental equations, what I have done is to 
numerically solve it with my PC. Here are the setup of the adaptor, the results and some 
analysis of two examples, one is a symmetric-distributed quadrupole sequence, and the 
other one is somehow modified A0 adaptor, which has different drift length among 
quadrupoles. 
 For the symmetric example, the bunch is emitted in the middle of a solenoid, 
adaptor setup is shown in figure 2 and parameters are shown in table 1. Analytic solutions 
are in table 2. 
 

 
Figure 2. Example 1 Adaptor Setup 
 

 
Bunch Energy 18 MeV 
Solenoid Field 100 Gauss 
Quadrupole Length 4 cm 
Drift Space 44 cm 

                                              Table 1. parameters for example 1 
 

 Gradient 1 (Gauss/cm) Gradient 2  Gradient 3 
Solution 1 231.6 -441.5 2074.6 
Solution 2 -231.9 491.5 2067.7 

                                             Table 2. solutions for Example 1 
 
Transfer matrix of the adaptor for each solution is: 
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By using these solution matrices and matrix multiplications, we directly get the x-y space 
distribution mapping between initial and final status, see figure 3. From figure 3, we 
found there are two modes of the transformation. More about modes will be disscussed in 
next section.  
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Figure 3.a Initial and final distribution in x-y space by Matrix calculation for solution 1 
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Figure 3.b Initial and final distribution in x-y space by Matrix calculation for solution 2 

 
Beta, alpha functions and phase advances for each solution can be calculated from the 
transfer matrices of the adaptor, results are shown in figure 4. The phase advance 
difference between x and y plane is 90 degrees. And alpha, beta functions coincide again 
when the bunch gets out of the adaptor.  
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Figure 4.a Beta function and phase advance within the adaptor for solution 1 
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Figure 4.b Beta function and phase advance within the adaptor for solution 2 
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Second example seems straightforward; all parameters are changed to be same as 

in A0. While, in A0, the bunch is not directly injected into the adaptor when it get out of 
the solenoid, instead, the bunch is produced and accelerated in a one-and-half-cell RF-
gun, and the solenoid is surrounding the RF-gun, finite longitudinal magnetic field exists 
where the bunch is born. The solenoid field vanishes before the bunch enters the 
following 9-cell booster cavity downstream. In RF-gun, the bunch gains 4MeV energy; in 
the booster cavity, it gains another 12---13MeV energy. Then, the bunch meets the 
adaptor with about 16.5MeV energy (In my PARMELA simulation, the energy with 
minimum energy spread is 16.36MeV). Sounds complex compared to last case? We can 
simplify it. 

Notice that the requirement of the adaptor to the bunch is only a matching rotation 
status when the bunch enters the adaptor and K afore-mentioned is just the angular 
velocity; we can find the rotation status of the bunch in A0 case by using the conservation 
of the canonical angular momentum.  
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So, since at this step I am not going to include any complex factors, such as acceleration, 
space charge effect…, it turns out to be very simple to investigate the A0 adaptor. I just 
put a cold bunch of energy 16.36MeV in the middle of a long solenoid which provides a 
uniform longitudinal magnetic field of the value same as that at cathode in A0 RF-gun. 
 The modified A0 adaptor setup is shown in figure 5 and parameters are shown in 
table 3. Analytic solution is in table 4, I found only one set of solution. 
 

 
Figure 5. Modified A0 Adaptor Setup 

 
 

Bunch Energy 16.36MeV 
Solenoid Field 783 Gauss 
Quadrupole Length(effective) 15.5 cm 
Drift Space 1 190.3 cm 
Drift Space 2 90.8 cm 

                                              Table 3 parameters for example 2 
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 Gradient 1 (Gauss/cm) Gradient 2  Gradient 3 
Solution 1 30.0 -12.8 8.75 

                                             Table 4 solutions for example 2 
 
Transfer matrix of the adaptor for the solution is: 
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By using these solution matrices and matrix multiplications, we directly get the x-y space 
distribution mapping between initial and final status, see figure 6. 
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Figure 6 Initial and final distribution in x-y space by Matrix calculation for A0 adaptor 
  
 Clearly, the mapping in A0 example is mode 2. 
 

Beta, alpha functions and phase advances for the solution is shown in figure 7. 



 

 12

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5

Be
ta
 fu

nc
tio

n 
(m

)

Z axis (m)

Beta X
Beta Y

 

-7

-6

-5

-4

-3

-2

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5

al
ph

a

Z axis (m)

Alpha X
Alpha Y

 

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5

Ph
as

e 
Ad

va
nc

e 
(d

eg
re

e)

Z axis (m)

Phi X
Phi Y

 
Figure 7 Beta function and phase advance within the A0 adaptor 


